Tags:
create new tag
, view all tags

仿STL中的堆算法的一个实现

作者:converse
原文链接:http://www.cppblog.com/converse/

RT。 堆的性质之类的不再这里阐述,写这个算法只为了更好的理解STL中的堆算法,如果看不懂STL中的算法也可以来参考这里给出的算法,因为是纯C的看起来会省去很多语言方面的细节。

同时里面还有一个STL中对应算法的测试以比较两者的效果。

/********************************************************************
created:    2007/3/18
filename:     main.cpp
author:        Lichuang

purpose:    测试模拟堆算法
*********************************************************************/

#include <algorithm>
#include <iostream>
#include <time.h>

using namespace std;

// push_heap为向堆中添加一个新的元素, 调用这个算法的前提是[First, Last)之间的元素满足堆的条件
// 新加入的元素为Last
void    push_heap(int* pFirst, int* pLast);

// pop_heap为从堆中删除一个元素, 调用这个算法的前提是[First, Last)之间的元素满足堆的条件
// 被删除的元素被放置到Last - 1位置,由于这里是max-heap,所以被删除的元素是这个序列中最大的元素
void    pop_heap(int* pFirst, int* pLast);

// make_heap将序列[First, Last)中的元素按照堆的性质进行重组
void    make_heap(int* pFirst, int* pLast);

// 对堆进行排序, 调用这个函数可以成功排序的前提是[pFirst, pLast)中的元素符合堆的性质
void    sort_heap(int* pFirst, int* pLast);

// 判断一个序列[First, Last)是否满足堆的条件,是就返回1,否则返回0
char    is_heap(int* pFirst, int* pLast);

void    test_heap_algo(int *pArray, int nLength);
void    test_heap_algo_in_stl(int *pArray, int nLength);
void    display_array(int *pArray, int nLength);

int main()
{
        srand(time(NULL));
        int Array[10], Array2[10];
        for(int i = 0; i < 10; ++i)
        Array[i] = Array2[i] = rand();
        
        test_heap_algo(Array, sizeof(Array) / sizeof(int));
        test_heap_algo_in_stl(Array2, sizeof(Array2) / sizeof(int));
        
        return 0;
}

// 静态函数, 用于根据堆的性质调整堆
static void adjust_heap(int *pFirst, int nHoleIndex, int nLen, int nValue);

// push_heap为向堆中添加一个新的元素, 调用这个算法的前提是[First, Last)之间的元素满足堆的条件
// 新加入的元素为Last
void push_heap(int* pFirst, int* pLast)
{
        int nTopIndex, nHoleIndex, nParentIndex;
        int nValue;
        
        nTopIndex = 0;
        nHoleIndex = (int)(pLast - pFirst - 1);
        nParentIndex = (nHoleIndex - 1) / 2;
        nValue = *(pLast - 1);
        // 如果需要插入的节点值比父节点大, 上溯继续查找
        while (nHoleIndex > nTopIndex && pFirst[nParentIndex] < nValue)
        {
                pFirst[nHoleIndex] = pFirst[nParentIndex];
                nHoleIndex = nParentIndex;
                nParentIndex = (nHoleIndex - 1) / 2;
        }
        pFirst[nHoleIndex] = nValue;
}

// pop_heap为从堆中删除一个元素, 调用这个算法的前提是[First, Last)之间的元素满足堆的条件
// 被删除的元素被放置到Last - 1位置,由于这里是max-heap,所以被删除的元素是这个序列中最大的元素
void pop_heap(int* pFirst, int* pLast)
{
        int nValue;
        
        nValue = *(pLast - 1);
        *(pLast - 1) = *pFirst;
        adjust_heap(pFirst, 0, (int)(pLast - pFirst - 1), nValue);
}

// make_heap将序列[First, Last)中的元素按照堆的性质进行重组
void make_heap(int* pFirst, int* pLast)
{
        int nLen, nParentIndex;
        
        nLen = (int)(pLast - pFirst);
        nParentIndex = (nLen - 1) / 2;
        
        while (true)
        {
                // 对父节点进行调整, 把父节点的值调整到合适的位置
                adjust_heap(pFirst, nParentIndex, nLen, pFirst[nParentIndex]);
                if (0 == nParentIndex)
                return;
                nParentIndex--;
        }
}

// 对堆进行排序, 调用这个函数可以成功排序的前提是[pFirst, pLast)中的元素符合堆的性质
void sort_heap(int* pFirst, int* pLast)
{
        // 调用pop_heap函数, 不断的把当前序列中最大的元素放在序列的最后
        while(pLast - pFirst > 1)
        pop_heap(pFirst, pLast--);
}

// 判断一个序列[First, Last)是否满足堆的条件,是就返回1,否则返回0
char is_heap(int* pFirst, int* pLast)
{
        int nLen, nParentIndex, nChildIndex;
        
        nLen = (int)(pLast - pFirst);
        nParentIndex = 0;
        for (nChildIndex = 1; nChildIndex < nLen; ++nChildIndex)
        {
                if (pFirst[nParentIndex] < pFirst[nChildIndex])
                return 0;
                
                // 当nChildIndex是偶数时, 那么父节点已经和它的两个子节点进行过比较了
                // 将父节点递增1
                if ((nChildIndex & 1) == 0)
                ++nParentIndex;
        }
        
        return 1;
}

// 一个静态函数仅供adjust_heap调用以证实JJHOU的结论
static void push_heap(int *pFirst, int nHoleIndex, int nTopIndex, int nValue)
{
        int nParentIndex;
        
        nParentIndex = (nHoleIndex - 1) / 2;
        while (nHoleIndex > nTopIndex && pFirst[nParentIndex] < nValue)
        {
                pFirst[nHoleIndex] = pFirst[nParentIndex];
                nHoleIndex = nParentIndex;
                nParentIndex = (nHoleIndex - 1) / 2;
        }
        pFirst[nHoleIndex] = nValue;
}

// 对堆进行调整, 其中nHoleIndex是目前堆中有空洞的节点索引, nLen是待调整的序列长度
// nValue是需要安插进入堆中的值
static void adjust_heap(int *pFirst, int nHoleIndex, int nLen, int nValue)
{
        int nTopIndex, nSecondChildIndex;
        
        nTopIndex = nHoleIndex;
        nSecondChildIndex = 2 * nTopIndex + 2;
        while (nSecondChildIndex < nLen)
        {
                if (pFirst[nSecondChildIndex] < pFirst[nSecondChildIndex - 1])
                --nSecondChildIndex;
                pFirst[nHoleIndex] = pFirst[nSecondChildIndex];
                nHoleIndex = nSecondChildIndex;
                nSecondChildIndex = 2 * nHoleIndex + 2;
        }
        if (nSecondChildIndex == nLen)
        {
                pFirst[nHoleIndex] = pFirst[nSecondChildIndex - 1];
                nHoleIndex = nSecondChildIndex - 1;
        }
        
        // 以下两个操作在这个函数中的作用相同, 证实了<<STL源码剖析>>中P178中JJHOU所言
        //pFirst[nHoleIndex] = nValue;
        push_heap(pFirst, nHoleIndex, nTopIndex, nValue);
}

void    test_heap_algo(int *pArray, int nLength)
{
        std::cout << "\ntest_heap_algo()\n";
        make_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        push_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        pop_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        if (is_heap(pArray, pArray + nLength - 1))
        {
                std::cout << "is heap!\n";
        }
        else
        {
                std::cout << "is not heap!\n";
        }
        
        make_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        if (is_heap(pArray, pArray + nLength))
        {
                std::cout << "is heap!\n";
        }
        else
        {
                std::cout << "is not heap!\n";
        }
        
        sort_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
}

void    test_heap_algo_in_stl(int *pArray, int nLength)
{
        std::cout << "\ntest_heap_algo_in_stl()\n";
        
        std::make_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        std::push_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        std::pop_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        // 注意is_heap不是STL中支持的算法, 貌似只有SGI的实现才有这个函数!
        if (is_heap(pArray, pArray + nLength - 1))
        {
                std::cout << "is heap!\n";
        }
        else
        {
                std::cout << "is not heap!\n";
        }
        
        std::make_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
        
        if (is_heap(pArray, pArray + nLength))
        {
                std::cout << "is heap!\n";
        }
        else
        {
                std::cout << "is not heap!\n";
        }
        
        std::sort_heap(pArray, pArray + nLength);
        display_array(pArray, nLength);
}

void    display_array(int *pArray, int nLength)
{
        for (int i = 0; i < nLength; ++i)
        std::cout << pArray[i] << " ";
        std::cout << std::endl;
}
Topic revision: r2 - 2008-12-21 - WinterLb
 
This site is powered by the TWiki collaboration platformCopyright © 2008-2018 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback 京ICP备05049167号